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ABSTRACT

This paper presents a new technique for detecting a small pole in

the presence of a nearby strong pole. By simultaneously applying the

chirp z-transform (CZT) and a recently developed window, the new tech-

nique is shown to be able to detect and resolve a small pole.

The CZT is efficient since it employs the Fast Fourier Transform

(FFT) to evaluate a convolution. But unlike the FFT which is limited

to the evaluation of the spectrum on the jw asix, the CZT can evaluate

the z-transform on the whole complex plane. And with the use ol the new

window, which is designed to have a near-sidelobe level of any specified

value, the CZT is shown to be able to resolve two closely spaced poles

with a large difference in amplitudes.

Unlike the Prony's method, the new technique does not require pre-

determining the system order. No matrix inversion or solution of

polynomial roots is required. Further, the new technique is a linear

operation, thus even under noisy environments it yields accurate,

stable results for extraction of poles from transient response data.

I. Introduction

In target identification one often illuminates the target by a

wideband pulse. One then characterizes the target by the complex

natural resonances extracted from the electromatnetic response. This

paper presents a new technique for detecting a small pole in the presence

of a nearby strong pole.

In recent years the singularity expansion method has been applied to

express the electromagnetic response in an expansion of complex

resonances of the target (1] It has been shown that the dominant

complex natural resonances of a target are a minimal set of parameters
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that define the overall physical properties of the target [2]. To

extract the complex resonances the Prony's method has been applied

successfully for noiseless data [3]. Recently, the pencil-of-function

method has been shown to be effective in dealing with noisy data for

extraction of the poles (4]. These techniques essentially involve

nonlinear data processing, requiring the solution of polynomial roots

and matrix inversion. The key problem is the determination of the system

order [5], which is complicated due to the presence of noise in data.

To circumvent the complexity of these methods, an alternative

technique for extracting the complex poles is investigated. By taking

advantage of the simplicity and efficiency of the FFT algorithm, one

can modify the FFT so that it can be employed to evaluate the z-transforin

of the time sequence along a general contour on the complex plane.

The modified FFT or the chirp z-transform (CZT) therefore plays the

role in a discrete system, played by the Lapalce Transform in continuous

systems. [6]. Because the time sequence is finite, the CZT has the

leakage effect. To suppress the leakage effect, a recently developed

window (7], which is designed to have a low near-sidelobe level, is

simultaneously applied with the CZT. Two examples are given to

illustrate the technique, which is shown to be able to detect and

resolve a small pole in the presence of a nearby strong pole. The new

technique does not require pre-determining the order of the system.

No matrix inversion or solution of polynomial roots is required.

Furthermore, since the CZT is a linear operation, it yields stable

results even under noisy environments.
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II The Chirp z-Transform

Consider a M-pole system which is represented by the impulse response

M -
x(t) = E ame Smt  (1)mn=1

where {sm} are complex poles and {am ) the corresponding residues. The

system transfer function is then obtained by taking the Laplace

Transform of x(t), which yields

M a
T(s) = Z m (2)

m=1 S-Sm

If x(t) is uniformly sampled at tn=nT, n=O,1,...,N-1, then, instead of

the Laplace Transform, the z-transform is applied:

N-1 _n
X(z)= I x z (3)

n=0 n

where x n=X(t n) and z=eSt. The z-transform of {x n} is representative of

the Laplace transform of x(t). From Eq. (2) it is seen that Y(s) has

singularity at the poles {s M} . Similarly, the z-transform X(z) tends to

have peak values at zm = eS-T. Thus by evaluating X(z) along a contour

near the poles one can estimate the pole locations, if X(z) is

evaluated at the set of equally spaced points around the unit circle,

zk = e-j2rk/N, k=O, 1, 2, ..., N-i, it results in a discrete Fourier

Transform (DFT):
N-1 j -n/X(zk  xeJ 2 nk/N k=O, 1, ...,N-1 (4)

n=()

By employing the FFT algorithm. X(zk) can be computed efficiently. To

achieve this efficiency, N is required to be a highly composite number.

If one is to employ a power-of-2 FFT algorithm, this can be accomplished

by augmenting the N-point sequences {x n} with a sufficient number of

zeros so that their total length is a power of 2.
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The DFT is effective in locating the poles only if the poles are

on or near the jw axis. In order to locate a pole which is away from

the jw axis, one would need to compute the z-transform along a general

contour. There are two general approaches to this problem: (a) the

contour is a circle that is concentric with the unit circle, and (b) the

contour is a spiral. The former is called modified FFT and the latter

is called chirp z-transform (CZT)

(A) Modified FFT

A concentric circle on the z-plane is equivalent to a straight line

on the s-plane. The correspondence is shown in Figure 1. Let Isk} and

{zk} be the corresponding points on the s-plane and z-plane, respectively.

Let fs = l/T be the sampling frequency. Then sk = 'o+jw k , where

wk=2TkfS/N. The {zk} are then given by

zk = eaoT ej2Trk/N k=O, 1, 2, ..., N-i. (5)

where IZk = eaoT is the radius of the circle. Eq. (4) can now be written as

X(zk NI(x e-no T )e-j2irnk/N (6)

n=O

Eq. (6) shows that, to evaluate X(z) along the contour jzj = e'oT on

the z-plane or along the straight vertical line a=a0 on the s-plane,

one can multiply the sequence {xn } by {enooT 
} and then take the FFT.

If one is interested in obtaining frequency samples equally spaced over

a small portion of the unit circle, one may augment the original sequence

with zeros, take the FFT, and retain the frequency samples of interest.

For example, if, instead of the frequency spacing F = 1/NT, one desires

to have a smaller spacing F' = l/LT, one has to augment L-N zeros to
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xn . Namely, let

^ n  n=O, 1, ... , N-IX n 0 n=N, N+I, ..., L-1 (7)

and then evaluate the following equations by the FFT.
L-1I Tjik/

X(zk) = I (xn(-jo )e n  kO, 1, 2, ..., L-1. (8)
n=O

From the L frequency samples one then retains only the desired spectral

points.

(B) CZT

To evaluate Eq. (3) along the contour as shown in Fig. 2, let

sk = s0+kAs k=O, 1, ..., J-1 (9)

where As = Aa+jAw, Ac is the increment along a-axis and Aw is the

increment along the jw-axis. In the z-plane, the contour is a spiral

given by

zk = eSoTek sT k=O, 1, ..., J-1 (10)

which has a radius of ozk1 = e(a0+kAa)T and a uniform angle of increment

Ae = TAw. Eq. (3) can now be written as

N-1
N-ik = ne ns T -nkTAs k=0, I, ... , (11)
n=0

By using the Bluestein's identity

nk = [n2+k2-(k-n) 2 1 (12)

one can write Eq. (11) as
N-i

X(Zk) = e k2TAs/2 Nn h (13)

where gn=xne nSoTe-n TAs/2 (14)

and

hn = en 
2TAs/2 (15)

Eq. (13) shows that the CZT can be evaluated by high-speed convolution

with the use of the FFT altorithm.
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III The Tseng Window

Since the data sequence is finite, both the modified FFT and CZT

suffer from the leakage effects. The main impediment of the leakage

effects is the high near-sidelobes of the spectral window. In

detecting a small pole in the presence of nearby strong poles on the

jw axis, the Tseng window has been shown to be effective [7]. Thus a

special Tseng window designed to have low near-sidelobes will be

employed to improve the detectability of the CZT.

Consider a data window specified by a set of 2K weights

{w0, wI, W2, ... , w2K-1}. The spectral window is related to the data

window by the Fourier Transform:

2K-iw j21fkT
W(f) = - ke (16)

k=O

By assuming that the data window is real and even, Eq. (16) can be

written as

W(f) = 2e-K x il (x 2y) (17)
k=1 x=cosnfl

where {ykI are the zeros of the polynomial. By controlling the locations

of the zeros one can form a spectral window with a desired sidelobe

structure. To suppress near-sidelobas the zeros {y k can be chosen as

follows:

Yk cos (- z k=1, 2, ... , K-1 (18)

where

Zk = k for k > k (19)

and

Zk_ 1i Zk-A1k for 1 kc ko  (20)

.... I - I- -0I I



with

=I Asin (21)

In Eqs. (20) and (21), Ak is the increment of {Zk}, ko0 is the number

of the near-sidelobes to be suppressed, and A is a parameter to control

the near-sidelobe level (A < 1). The design principle is based on the

observation that to suppress the first ko sidelobes the zeros {yk }

should have small spacings, which is achieved by making the increments

{Ak } small. The smallest increment occurs at k=1 and is given by

= 1 - A. By increasing A and/or ko the near-sidelobe level can be

reduced to any desired value.

A Tseng window is designed to suppress the near-sidelobes for

128 uniformly sampled weightings. The chosen parameters are: k =4

and A=0.7. Fig. 3 shows the rectangular and the Tseng windows. The

rectangular window is obtained by setting A=O. It is seen that as A is

increased from 0 to 0.7 the near-sidelobes are effectively reduced from

-13dB to -47dB.

IV. Enhancement of Poles

The chirp z-transform algorithm and the Tseng window are now applied

to a four-pole system. Attention is focused on the resolvability of

two closely spaced poles which have large amplitude differences., The

impulse response of the four-pole system is represented by Eq. (1) with

the following parameters:

a1=0.1, a1=-250Hz, fl=OOOHz

a2=1.0, a2=-30OHz, f2=1250Hz

a3=1.0, a3=-150Hz, f3=200OHz

a4=0.1, o4=-200Hz, f4=2250Hz
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The sampling frequency is chosen as lOkHz. There are 128 samples.

These samples are weighted by 128 weightings of the Tseng data window.

The chirp z-transform of these samples was then evaluated along eight

contours, which are shown in Fig. 4 along with the s-plane pole location.

The first contour is on the jw axis; this is the regular FFT. The rest

of the contours are parallel to the jw axis with ao=-50, -100, -150,

-200, -250, -300 and -350 Hz, respectively. These are called modified

FFT and are special cases of CZT. The spectra of the four-pole system

along these contours are presented in Figs.5 through 11. Both the

spectra using the rectangular and the Tseng windows, respectively, are

shown for ccmparison. Fig. 5 (for ao=0) shows that the FFT can detect

the frequencies at f2 (1250 Hz) and f3 (2000 Hz) only. Both windows

fail to detect the two small poles at f1 (1000 Hz) and f 4 (2250 Hz).

As the contour moves to o=-50 Hz Fig. 6 indicates that, even though

the Tseng window shows sharper resolution, both windows still could not

detect the two small poles. As the contour is moved further to the left

at ao=-100 Hz, Fg. 7 shows a deep valley between f 2 (1250 Hz) and

f3 (2000 Hz). The Tseng window shows a small peak at f4 (2250 Hz) but

the rectangular window still could not detect the two small poles. Now

as the contour is moved to ao=-150 Hz, which passes right through the

pole at f3 (2000 Hz), the Tseng window can now clearly detect and resolve

the pole at f4 (a4=-200 Hz and f 4=2250 Hz), as shown in Fig. 8. In order

to detect the small pole at f, = 1000 Hz the contour is moved further to

the left at a =-200 Hz. The Tseng window now starts indicating the pole
0

at f1 (a1=-250 Hz) (see Fig. 9). By further moving the contour to the left

at io=-250 Hz, which passes through the pole at f1, the results in Fig. 10

indicate that the Tseng window can detect all the poles while the
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rectangular window still can not detect the two small poles. As the

contours are pushed further to the left, ao=-300 Hz and o0=-350 Hz in

Fig. 11 and 12 respectively, the resolution at each pole becomes

sharper, the peaks at fit f2 and f4 ' however, suffer from splitting.

This is due to the computation noise as seen from Eq. (6) where x isn

multiplied by e n oT which can become very large when -noo becomes

large. From these spectra it appears that the best contour is the one

at 0o=-250 Hz, which lies closest to the smallest pole at fl" In all

these examples the rectangular window never detected the two small poles,

while by properly choosing the contour the Tseng window is capable of

detecting the two small poles.

In the next example, instead of the modified FFT, the regular CZT

is applied to the samples along four tilted contours. Fig 13 shows

the s-plane pole locations and the four contours on the s-plane. For

each contour the rectangular and the Tseng windows are applied

separately. The results are presented in Figs. 14 through 17. Fig. 14

shows the spectra along the contour Ao=l. It is seen that the Tseng

window shows sharper resolution. Both windows could detect the larger

poles at f2 (1250 Hz) and f3 (2000 Hz) but both failed to detect the

small poles. As the contour is tilted more to Aa=2, which passes

between the poles at f3 and f the CZT results show that the Tseng window

has better resolution (see Fig. 15): The pole at f4 is clearly resolved.

But the rectangular window again fails to detect the two small poles.

In order to detect the small pole at f1 (1000 Hz) the contour is further

tilted to Aa=3. The results are presented in Fig. 16. The resolution

of the Tseng window is now very sharp at f3 and f4 (2250 Hz) but failed

to detect the small pole at f 1" Instead, the high frequency noise starts
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distorting the spectrum peak at f4 " If the contour is now further

tilted to Aa=4, the high frequency noise becomes worse and the small

pole at f still is not resolved (see Fig. 17). In all four contours

evaluated the rectangular window never detected the two small poles.

The two examples demonstrated the effectiveness of the CZT and the

Tseng window in detecting and resolving a small pole located far away

from the jw axis. The examples also illustrated the importance of

choosing an appropriate contour. The main limitation of the new

technique is the high frequency computational noise. How to cope with

this problem is currently being studied. Further research along this

line will be reported in the future.

V. Conclusion

A new technique for detecting a small pole in the presence of a nearby

strong pole is presented in this paper. By simultaneously applying

the CZT and Tseng window, the new technique is shown to be able to

detect and resolve a small pole. Numerous spectra are plotted for

a four-pole system along various contours. These examples demonstrated

the effectiveness of the Tseng window as compared to the rectangular

window in detecting and resolving a small pole located far away from

the jw axis. These examples also illustrated the importance of

choosing an appropriate contour in detecting the poles.
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Fig. 1. The correspondence of a z-plane contour to an s-plane contour
(z=e s 

, r0 eoT).

Fig. 2. The correspondence of a z-plane contour to an s-plane contour
for the CZT.

Fig. 3. The spectral windows of the rectangular (dash) and the Tseng
(solid) weightings.

Fig. 4. The s-plane locations of the poles and the eight contours for
evaluation of the modified FFT.

Fig. 5. Detection of a four-pole signal by FFT with the rectangular
(dash) and the Tseng (solid) windows (a=c0)

Fig. 6. Detection of a four-pole signal by modified FFT with the
rectangular (dash) and the Tseng (solid) windows (a =-50Hz)

Fig. 7. Detection of a four-pole signal by modified FFT with the
rectangular (dash) and Tseng (solid) windows. (a=-lOOHz).

Fig. 8. Detection of a four-pole signal by modified FFT with the
rectangular (dash) and Tseng (solid) windows. (a=-150Hz).

Fig. 9. Detection of a four-pole signal by modified FFT with the
rectangular (dash) and Tseng (solid) windows (a =-200Hz).

Fig. 10. Detection of a four-pole signal by modified FFT with the
rectangular (dash) and Tseng (solid) windows. (ao=-250Hz).

Fig.11. Detection of a four-pole signal my modified FFT with the
rectangular (dash) and Tseng (solid) windows (a=-300Hz).

Fig. 12. Detection of a four-pole signal by modified FFT with the
rectangular (dash) and Tseng (solid) windows (a=-350Hz).

Fig.13. The s-plane locations of the poles and the four contours for
evaluation of the CZT.

Fig. 14. Detection of a four-pole signal by the CZT with the
rectangular (dash) and Tseng (solid) windows (La=I).



Fig. 15. Detection of a four-pole signal by the CZT with the
rectangular (dash) and Tseng (solid) windows. (Ao=2).

Fig. 16. Detection of a four-pole signal by the CZT with the
rectangular (dash) and Tseng (solid) windows. (Ao=3).

Fig. 17. Detection of a four-pole signal by the CZT with the
rectangular (dash) and Tseng (solid) windows (Aa=4).
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